Abstract

1. The interaction of the haem-binding region of apomyoglobin with different ligands was examined by ultrafiltration, equilibrium dialysis and spectrophotometry, to study unspecific features of protein-ligand interactions such as they occur in, for example, serum albumin binding. 2. Apomyoglobin, in contrast with metmyoglobin, binds at pH 7, with a high affinity, one molecule of Bromophenol Blue, bilirubin and protoporphyrin IX, two molecules of n-dodecanoate and n-decyl sulphate and four molecules of n-dodecyl sulphate and n-tetradecyl sulphate. 3. The number of high-affinity sites and/or association constants for the alkyl sulphates are enhanced by an increase of hydrocarbon length, indicating hydrophobic interactions with the protein. 4. Measurements of the temperature-dependence of the association constants of the high-affinity sites imply that the binding processes are largely entropy-driven. 5. Binding studies in the presence of two ligands show that bilirubin plus Bromophenol Blue and dodecanoate plus Bromophenol Blue can be simultaneously bound by apomyoglobin, but with decreased affinities. By contrast, the apomyoglobin-protoporphyrin IX complex does not react with Bromophenol Blue. 6. Optical-rotatory-dispersion measurements show that the laevorotation of apomyoglobin is increased towards that of metmyglobin in the presence of haemin and protoporphyrin IX. Small changes in the optical-rotatory-dispersion spectrum of apomyoglobin are observed in the presence of the other ligands. 7. It is concluded that the binding sites on apomyoglobin probably do not pre-exist but appear to be moulded from predominantly non-polar amino acid residues by reaction with hydrophobic ligands. 8. Comparison with data in the literature indicates that apomyoglobin on a weight basis has a larger hydrophobic area avaialble for binding of ligands than has human serum albumin. On the other hand, the association constants of serum for the ligands used in this study are generally somewhat larger than those of apomyoglobin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call