Abstract
Human indoleamine 2,3-dioxygenase (hIDO), a monomeric heme enzyme, catalyzes the oxidative degradation of L-tryptophan (L-Trp) and other indoleamine derivatives. Using Fourier transform infrared and optical absorption spectroscopy, we have investigated the interplay between ferrous hIDO, the ligand analog CO, and the physiological substrate L-Trp. These data provide the long-sought evidence for two distinct L-Trp binding sites. Upon photodissociation from the heme iron at T > 200 K, CO escapes into the solvent. Concomitantly, L-Trp exits the active site and, depending on the L-Trp concentration, migrates to a secondary binding site or into the solvent. Although L-Trp is spectroscopically silent at this site, it is still noticeable due to its pronounced effect on the CO association kinetics, which are significantly slower than those of L-Trp-free hIDO. L-Trp returns to its initial site only after CO has rebound to the heme iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.