Abstract

The α2a adrenoceptor is a medically relevant subtype of the G protein-coupled receptor family. Unfortunately, high-throughput techniques aimed at producing novel drug leads for this receptor have been largely unsuccessful because of the complex pharmacology of adrenergic receptors. As such, cutting-edge in silico ligand- and structure-based assessment and de novo deep learning methods are well positioned to provide new insights into protein-ligand interactions and potential active compounds. In this work, we (i) collect a dataset of α2a adrenoceptor agonists and provide it as a resource for the drug design community; (ii) use the dataset as a basis to generate candidate-active structures via deep learning; and (iii) apply computational ligand- and structure-based analysis techniques to gain new insights into α2a adrenoceptor agonists and assess the quality of the computer-generated compounds. We further describe how such assessment techniques can be applied to putative chemical probes with a case study involving proposed medetomidine-based probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.