Abstract

We evaluated the signaling pathways involved in regulating vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, in response to natural and synthetic progestins in breast cancer cells. Inhibition of the phosphoinositide-3'-kinase (PI3-kinase) signaling pathway or the specificity protein-1 (SP-1) transcription factor abolished both progesterone- and medroxyprogesterone acetate (MPA)-induced VEGF secretion from BT-474 and T47-DCO)cells. Inhibitors of the MAPK kinase 1/2/MAPK and N-terminal jun kinase/MAPK signaling pathways blocked both progesterone- and MPA-induced VEGF secretion in BT-474 cells. However, these inhibitors blocked only progesterone-, but not MPA-induced VEGF secretion in T47-DCO cells. Inhibitors of PI3-kinase or SP-1 blocked both progesterone- and MPA-induced increases in VEGF mRNA levels in T47-DCO cells. The proximal SP-1 sites within the VEGF promoter were critical for progestin-dependent induction of VEGF. In contrast, MAPK inhibitors did not block the progesterone- or MPA-induced increases in VEGF mRNA in T47-DCO cells, suggesting that MAPK inhibitors decreased progesterone-induced VEGF secretion in T47-DCO cells by blocking posttranscriptional mechanisms. The MAPK kinase/ERK/MAPK-independent induction of VEGF mediated by MPA was associated with the PRB [progesterone receptor (PR) B] isoform of the PR in T47-DCO cells. None of the inhibitors tested reduced basal PR levels or abrogated PR-dependent gene expression from a reporter plasmid, indicating that loss of PR function cannot explain any of the observed effects. Because the PI3-kinase signaling pathway and SP-1 transcription factor play critical roles in progestin-dependent VEGF induction, these may be useful targets for developing antiangiogenic therapies to prevent progression of progestin-dependent human breast cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call