Abstract

Bioluminescence resonance energy transfer (BRET) is a commonly used assay system for studying protein-protein interactions. The present protocol introduces a conceptually unique ligand-activatable BRET system (termed BRET9), where a full-length artificial luciferase variant 23 (ALuc23), acting as the energy donor, is sandwiched in between a protein pair of interest, FRB and FKBP, and further linked to a fluorescent protein as the energy acceptor for studying protein-protein interaction. A specific ligand, rapamycin, which initiates intramolecular interactions of FRB and FKBP inside the probe, which develops molecular strain in the sandwiched ALuc23 to complete its folding, thus, the probe system greatly enhances both the overall bioluminescence (BL) spectrum and the BRET signal in the far-red (FR) region. This new BRET system provides a robust ligand-activatable platform that efficiently reports FR-BL signals in mammalian cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call