Abstract
Let (C,G) be a smooth irreducible projective curve of genus g over an algebraically closed field k of chararacteristic p>0 and G be a finite group of automorphisms of C. It is well known that here, contrary to the characteristic 0 case, Hurwitz‘s bound |G|[les ] 84(g-1) doesn‘t hold in general; in such cases this gives an obstruction to obtaining a smooth galois lifting of (C,G) to characteristic 0. We shall give new obstructions of local nature to the lifting problem, even in the case where G is abelian. In the case where the inertia groups are p√1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.