Abstract
AbstractThis study enables practitioners and researchers to make an informed choice for a financial statement fraud detection model, rather than defaulting to popular, yet dated, models. Using a specifically devised performance criterion, our newly configured ensemble outperforms 31 others in the most comprehensive comparison to date spanning parametric, non‐parametric, big data and ensemble techniques. We use a large set of input variables and holdout data relative to prior studies. We find empirical support for financial and non‐financial variables covering the three Fraud Triangle factors. New findings include fraud risk being reduced with more debt, likely from increased monitoring by creditors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.