Abstract
AbstractPrivacy-preserving inference aims to avoid revealing identifying information about individuals during inference. Lifted probabilistic inference works with groups of indistinguishable individuals, which has the potential to prevent tracing back a query result to a particular individual in a group. Therefore, we investigate how lifting, by providing anonymity, can help preserve privacy in probabilistic inference. Specifically, we show correspondences between k-anonymity and lifting and present s-symmetry as an analogue as well as PAULI, a privacy-preserving inference algorithm that ensures s-symmetry during query answering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.