Abstract

The moduli space of principally polarized abelian varieties $A_g$ of genus g is defined over the integers and admits a minimal compactification $A_g^*$, also defined over the integers. The Hodge bundle over $A_g$ has its Chern classes in the Chow ring of $A_g$ with rational coefficients. We show that over the prime field $F_p$, these Chern classes naturally lift to $A_g^*$ and do so in the best possible way: despite the highly singular nature of $A_g^*$ they are represented by algebraic cycles on $A_g^*\otimes F_p$ which define elements in its bivariant Chow ring. This is in contrast to the situation in the analytic topology, where these Chern classes have canonical lifts to the complex cohomology of the minimal compactification as Goresky-Pardon classes, which are known to define nontrivial Tate extensions inside the mixed Hodge structure on this cohomology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.