Abstract
In this paper we discuss the polyhedral structure of the integer single node flow set with two possible values for the upper bounds on the arc flows. Such mixed integer sets arise as substructures in complex mixed integer programs for real application problems.This work builds on results for the integer single node flow polytope with two arcs given by Agra and Constantino, 2006a. Valid inequalities are extended to a new family, the lifted Euclidean inequalities, and a complete description of the convex hull is given. All the coefficients of the facet-defining inequalities can be computed in polynomial time.We report on some computational experimentations for three problems: an inventory distribution problem, a facility location problem and a multi-item production planning model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.