Abstract
Pastures are a class of field-like algebraic objects which include both partial fields and hyperfields and have nice categorical properties. We prove several lift theorems for representations of matroids over pastures, including a generalization of Pendavingh and van Zwam's Lift Theorem for partial fields. By embedding the earlier theory into a more general framework, we are able to establish new results even in the case of lifts of partial fields, for example the conjecture of Pendavingh–van Zwam that their lift construction is idempotent. We give numerous applications to matroid representations, e.g. we show that, up to projective equivalence, every pair consisting of a hexagonal representation and an orientation lifts uniquely to a near-regular representation. The proofs are different from the arguments used by Pendavingh and van Zwam, relying instead on a result of Gelfand–Rybnikov–Stone inspired by Tutte's homotopy theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.