Abstract

AbstractIn this paper, the aerodynamic shape optimization problems with uncertain operating conditions have been addressed. After a review of robust control theory and the possible approaches to take into account uncertainties, the use of Taguchi robust design methods in order to overcome single point design problems in aerodynamics is proposed. Under the Taguchi concept, a design with uncertainties is converted into an optimization problem with two objectives which are the mean performance and its variance, so that the solutions are as less sensitive to the uncertainty of the input parameters as possible. Furthermore, the modified non‐dominated sorting genetic algorithms are used to capture a set of compromised solutions (Pareto front) between these two objectives. The flow field is analyzed by Navier–Stokes computation using an unstructured mesh. In order to reduce the number of expensive evaluations of the fitness function a response surface modeling is employed to estimate the fitness value using the polynomial approximation model. During the solution of the optimization problem, a semi‐torsional spring analogy is used for the adaption of the computational mesh to all the obtained geometrical configurations. The proposed approach is applied to the robust optimization of the 2D high‐lift devices of a business aircraft by maximizing the mean and minimizing the variance of the lift coefficients with uncertain free‐stream angle of attack at landing flight condition. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.