Abstract
The impact of Gurney flaps (GF), of different heights and perforations, on the aerodynamic and wake characteristics of a NACA 0015 airfoil equipped with a trailing-edge flap (TEF) was investigated experimentally at Re = 2.54 × 105. The addition of the Gurney flap to the TEF produced a further increase in the downward turning of the mean flow (increased aft camber), leading to a significant increase in the lift, drag, and pitching moment compared to that produced by independently deployed TEF or GF. The maximum lift increased with flap height, with the maximum lift-enhancement effectiveness exhibited at the smallest flap height. The near wake behind the joint TEF and GF became wider and had a larger velocity deficit and fluctuations compared to independent GF and TEF deployment. The Gurney flap perforation had only a minor impact on the wake and aerodynamics characteristics compared to TEF with a solid GF. The rapid rise in lift generation of the joint TEF and GF application, compared to conventional TEF deployment, could provide an improved off-design high-lift device during landing and takeoff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.