Abstract

We use the recently introduced lifted product to construct a family of quantum low density parity check codes (QLDPC codes). The codes we obtain can be viewed as stacks of surface codes that are interconnected, leading to the name lift-connected surface (LCS) codes. LCS codes offer a wide range of parameters—a particularly striking feature is that they show interesting properties that are favorable compared to the standard surface code. For example, already at moderate numbers of physical qubits in the order of tens, LCS codes of equal size have lower logical error rate or similarly, require fewer qubits for a fixed target logical error rate. We present and analyze the construction and provide numerical simulation results for the logical error rate under code capacity and phenomenological noise. These results show that LCS codes attain thresholds that are comparable to corresponding (non-connected) copies of surface codes, while the logical error rate can be orders of magnitude lower, even for representatives with the same parameters. This provides a code family showing the potential of modern product constructions at already small qubit numbers. Their amenability to 3D-local connectivity renders them particularly relevant for near-term implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.