Abstract

We develop a method for estimating the instantaneous lift coefficient on a rapidly pitching airfoil that uses a small number of pressure sensors and a measurement of the angle of attack. The approach assimilates four surface pressure measurements with a modified nonlinear state space model (Goman-Khrabrov model) through a Kalman filter. The error of lift coefficient estimates based only on a weighted-sum of the measured pressures are found to be noisy and biased, which leads to inaccurate estimates. The estimate is improved by including the predictive model in an conventional Kalman filter. The Goman-Khrabrov model is shown to be a linear parameter-varying system and can therefore be used in the Kalman filter without the need for linearization. Additional improvement is realized by modifying the algorithm to provide more accurate estimate of the lift coefficient. The improved Kalman filtering approach results in a bias-free lift coefficient estimate that is more precise than either the pressure-based estimate or the Goman-Khrabrov model on their own. The new method will enable performance enhancements in aerodynamic systems whose performance relies on lift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.