Abstract

Actuator-disk models (ADMs) use blade element theory to numerically simulate the flow field induced by axial fans. These models give a fair approximation at near design flow rates, but are of poor accuracy at low flow rates. Therefore, the lift/drag (LD) characteristics of two-dimensional (2D) sections along the span of an air-cooled heat exchanger (ACHE) axial fan are numerically investigated, with the future prospect of improving ADMs at these flow conditions. It is found that the blade sectional LD characteristics are similar in shape, but offset from the 2D LD characteristics of the reference airfoil (NASA LS 413 profile) at small angles of attack (αatt<5deg). A deviation between these characteristics is observed at higher angles of attack. The blade sectional lift coefficients for αatt>5deg always remain lower compared to the maximum lift coefficient of the reference airfoil. Conversely, the blade sectional drag coefficients are always higher compared to that of the reference airfoil for αatt>5deg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.