Abstract
We establish the Lifschitz-type singularity around the bottom of the spectrum for the integrated density of states for a class of subordinate Brownian motions in presence of the nonnegative Poissonian random potentials, possibly of infinite range, on the Sierpiński gasket. We also study the long-time behaviour for the corresponding averaged Feynman–Kac functionals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.