Abstract

We present a theoretical approach for understanding the stability of simple metal nanowires, in particular monovalent metals such as the alkalis and noble metals. Their cross sections are of order one nanometer so that small perturbations from external (usually thermal) noise can cause large geometrical deformations. The nanowire lifetime is defined as the time required for making a transition into a state with a different cross-sectional geometry. This can be a simple overall change in radius, or a change in the cross section shape, or both. We develop a stochastic field theoretical model to describe this noise-induced transition process, in which the initial and final states correspond to locally stable states on a potential surface derived by solving the Schrodinger equation for the electronic structure of the nanowire numerically. The numerical string method is implemented to determine the optimal transition path governing the lifetime. Using these results, we tabulate the lifetimes of sodium and gold nanowires for several different initial geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.