Abstract

AbstractThe mechanisms that control the lifetime of thermal barrier coating (TBC) systems have been traced by two particular overlay bondcoats serving as model systems: superalloy pins (IN100, CMSX‐4) with two alternative NiCoCrAlRE (RE: Hf, Y) bond coat compositions (i) NiCoCrAlY without and (ii) with co‐dopants of silicon and hafnium. On top an electron‐beam physical‐vapor deposited (EB‐PVD) yttria partially stabilized zirconia (YPSZ) TBC commonly mixed with 2 wt.% hafnia, or, rarely with 10 wt.%, was applied. The test pins were thermo‐cycled at 1100 and 1150 °C until failure. Identical lifetimes in cyclic tests on YPSZ TBCs with 2 (relatively high sintering rate) and 10 wt.% hafnia (relatively low sintering rate) preclude an effect of diffusion mechanisms of the YPSZ TBC on lifetime. The fit of lifetimes and test temperatures to Arrhenius‐type relationships gives activation energies for failure. These energies agree with the activation energies for anion and cation diffusion in alumina for the respective bondcoat variant: (i) for the NiCoCrAlY/TBC system for O2‐ diffusion in alumina,(ii) for the NiCoCrAlYSiHf/TBC system for Al3+ diffusion in alumina.SEM and EDS investigations of the thermally grown oxides (TGOs) confirm the mechanisms responsible for TBC failure as indicated by activation energies. Two categories of failure can be distinguished: (i) NiCoCrAlY coatings fail by an “adhesive mode of failure” along smooth bond coat/TGO interfaces driven by a critical TGO thickness. (ii) NiCoCrAlYSiHf coatings fail later and more reluctantly by a “cohesive” crack mode via de‐cohesion at the TGO/TBC interface. In the latter case a quasi‐integrity of the crack‐affected TGO is lengthily maintained up to failure by a crack‐pinning mechanism which runs via Al3+ supply from the bondcoat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call