Abstract

With the relentless scaling of semiconductor technology, the lifetime reliability of embedded multiprocessor platforms has become one of the major concerns for the industry. If this is not taken into consideration during the task allocation and scheduling process, some processors might age much faster than the others and become the reliability bottleneck for the system, thus significantly reducing the system's service life. To tackle this problem, in this paper, we propose an analytical model to estimate the lifetime reliability of multiprocessor platforms when executing periodical tasks, and we present a novel lifetime reliability-aware task allocation and scheduling algorithm based on simulated annealing technique. In addition, to speed up the annealing process, several techniques are proposed to simplify the design space exploration process with satisfactory solution quality. Experimental results on various multiprocessor platforms and task graphs demonstrate the efficacy of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.