Abstract
Static random access memory (SRAM) based field-programmable gate array (FPGA) is currently facing challenges of high leakage power and limited capacity. Replacing SRAM in FPGA with emerging nonvolatile memory (NVM) has become an effective way to solve this issue. While enjoying the advantages of NVM in power consumption and integration, nonvolatile FPGA platform is also plagued by lifetime problem. Among all components, block random access memory (BRAM) has the severest endurance problem. The state-of-the-art wear leveling strategies for NVM-based BRAMs rely heavily on static analysis. However, the static analysis would not be accurate enough for application with multiple runtime working patterns. In this article, we propose a pattern-aware wear leveling mechanism. It can improve lifetime through adaptive reconfiguration without static analysis. Evaluation shows that our mechanism can achieve 120% higher lifetime improvement with 4% performance overhead than existing performance-aware wear leveling strategy (Huai et al., 2019).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.