Abstract

Laser-induced exciplex fluorescence is a well-established technique for liquid-vapor imaging in evaporating sprays that offers phase-dependent spectrally separated emission. However, the accuracy of this approach is limited by substantial crosstalk from the liquid to vapor phase signals. This Letter shows the use of a combination of spectral and temporal filtering to reduce this crosstalk by three orders of magnitude and eliminate the need for temperature-dependent crosstalk corrections in the N,N-diethylmethylamine/fluorobenzene system. The relative decay rates of the liquid and vapor signals are quantified and show crosstalk-free imaging for monodisperse evaporating droplets over a wide range of exciplex tracer concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.