Abstract

Summary In this paper, new in-core self-powered neutron detector emitter candidate materials, ie, vanadium, cobalt, and silver, have been examined in their lifetimes compared with the commonly used rhodium emitter. Using a new quantitative lifetime evaluation model, the lifetimes of vanadium and cobalt were determined to be longer than that of rhodium, but these materials were also shown to have the disadvantage of low signal intensities. Under normal operating conditions, we showed that rhodium emitter can be used for 2 cycles of pressurized water reactors (PWRs) with lifetime of 4.35 years, whereas silver can be used for 5 cycles of PWRs with lifetime of 8.04 years. Three sensitivity tests were performed for rhodium and silver about (1) the emitter size, (2) the fuel assembly burnup, and (3) the emitter temperature variations. From the test results, we observed that the lifetimes of rhodium and silver emitters remained 2 and 5 cycles long, respectively. We concluded that silver can significantly extend the in-core detector's lifetime in PWR operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.