Abstract
Organisms with annual life cycles are exposed to life stage specific thermal environments across seasons. Seasonal variation in thermal environments can vary across years and among sites. We investigated how organisms with annual life cycles respond to predictable seasonal changes in temperature and unpredictable thermal variation between habitats and years throughout their lives. Field surveys and historical records reveal that the spatially and temporally heterogeneous thermal environments inhabited by the annual mayfly Ephemerella maculata (Ephemerellidae) shift the date for transition to the next, life stage, so that the thermal phenotype of each life stage matches the thermal environment of the specific habitat and year. Laboratory studies of three distinct life stages of this mayfly reveal that life stage transitions are temperature dependent, facilitating timing shifts that are synchronized with the current season's temperatures. Each life stage exhibited specific thermal sensitivity and performance phenotypes that matched the ambient temperature typically experienced during that life stage. Our study across the whole life cycle reveals mechanisms that allow organisms to achieve lifetime eurythermy in a dynamic seasonal environment, despite having narrower thermal ranges for growth and development in each life stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.