Abstract

Electrodes based on activated carbon and manganese oxide coated on a cotton woven fabric were developed and investigated. The electrodes were then assembled with two polymer electrolyte membranes, Nafion®115 and Aquivion®E87-05S, and two different supercapacitors were produced with specific capacitances and energy densities of 130 and 132 F g−1, and 11.5 and 11.7 Wh kg−1, respectively. Furthermore, a new durability methodology, which combines galvanostatic charge/discharge cycles together with potentiostatic floating conditions, was used to get insight into their electrochemical performance under stringent conditions. The supercapacitor assembled with Nafion®115 electrolyte worked successfully for 10 k cycles and 140 h under a constant voltage of 1.6 V (floating condition), whereas the supercapacitor assembled with Aquivion®E87-05S electrolyte worked successfully for more than 15 k cycles and 210 h, without any appreciable degradation of their electrochemical properties. In summary, hybrid solid-state supercapacitors based on electrodes produced by simple methodologies and low-cost materials, and with long durability performance under very harsh conditions were developed and analysed for their potential utilization as flexible energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call