Abstract

There is interest in the use of carbon nanotubes (CNTs) to create a field emission (FE) cathode for the neutralization of exhaust plumes of low-power (<; 500 W) electric propulsion devices since FE cathodes do not require a gas flow to operate. To incorporate CNT emitters into propulsion systems, the current emission output over the lifetime of the cathode must be understood. Multiple FE cathodes that consist of multiwalled CNT arrays have been fabricated. Seven cathodes are characterized at pressures below 10 5 T at constant voltage between the CNTs, and the gate until failure occurs. The maximum current density observed is 9.08 mA/cm2 with average current densities up to 2.52 mA/cm2, and the maximum life span is 368 h. The behavior of the cathode current emission is highly unstable and consists of oscillations and sudden shifts. Resistive heating is believed to be the primary cause for failure in two thermally assisted modes: 1) oxidative ablation at the root of the nanotube and 2) field evaporation at the tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.