Abstract

Maximum lifespan for most animal species is difficult to define. This is challenging for wildlife management as it is critical for estimating important aspects of population biology such as mortality rate, population viability, and period of reproductive potential. Recently, it has been shown cytosine-phosphate-guanine (CpG) density is predictive of maximum lifespan in vertebrates. This has made it possible to predict lifespan in long-lived species, which are generally the most intractable. In this study, we use gene promoter CpG density to predict the lifespan of five marine turtle species. Marine turtles are a particularly difficult group for lifespan estimation because of their migratory behaviour, longevity and high juvenile mortality rates, which all restrict individual tracking over their lifespan. Sanger sequencing was used to determine the CpG density in selected promoters. We predicted the lifespans for marine turtle species ranged from 50.4 years (flatback turtle, Natator depressus) to 90.4 years (leatherback turtle, Dermochelys coriacea). These lifespan predictions have broad applications in marine turtle research such as better understanding life cycles and determining population viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.