Abstract

In this work, we describe the use of unfolded graphene as a three dimensional (3D) conducting network for LiFePO4 nanoparticle growth. Compared with stacked graphene, which has a wrinkled structure, the use of unfolded graphene enables better dispersion of LiFePO4 and restricts the LiFePO4 particle size at the nanoscale. More importantly, it allows each LiFePO4 particle to be attached to the conducting layer, which could greatly enhance the electronic conductivity, thereby realizing the full potential of the active materials. Based on its superior structure, after post-treatment for 12 hours, the LiFePO4–unfolded graphene nanocomposite achieved a discharge capacity of 166.2 mA h g−1 in the 1st cycle, which is 98% of the theoretical capacity (170 mA h g−1). The composite also displayed stable cycling behavior up to 100 cycles, whereas the LiFePO4–stacked graphene composite with a similar carbon content could deliver a discharge capacity of only 77 mA h g−1 in the 1st cycle. X-ray absorption near-edge spectroscopy (XANES) provided spectroscopic understanding of the crystallinity of LiFePO4 and chemical bonding between LiFePO4 and unfolded graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call