Abstract

In this investigation, the synthesis strategy is involved the creation of LiFePO4–Fe2P–C composites with a porous conductive architecture, which includes distinct regions or clusters containing antiferromagnetic LiFePO4 in close proximity to ferromagnetic Fe2P. The microstructure is achieved by using a simple ultra-fast solvent assisted manual grinding method, combined with solid state reaction, which can replace the time-consuming high energy ball milling method. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. The electrochemical performance is outstanding, especially the high C rate. The composite cathode is found to display specific capacity of 167mAhg−1 at 0.2C and 146mAhg−1 at 5C after 100 cycles, respectively. At the high current density of 1700mAg−1 (10C rate), it exhibits long-term cycling stability, retaining around 96% (131mAhg−1) of its original discharge capacity beyond 1000 cycles, which can meet the requirements of a lithium-ion battery for large-scale power applications. The obtained results have demonstrated that the fabrication of samples with strong and extensive antiferromagnetic and ferromagnetic interface coupling of LiFePO4/Fe2P provides a versatile strategy toward improving the electrochemical properties of LiFePO4 materials and also opens up a new window for material scientists to further study the new exchange bias phenomenon and its ability to enhance the electrochemical performance of lithium-ion battery electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.