Abstract

LiFePO4 is an attractive cathode material for lithium ion battery due to its high capacity of 170 mAh g−1, long cycle life, good safety and low cost, which suffers from the instinct low electron conductivity and poor rate performance. Herein, a composite material consisting of LiFePO4, activated carbon and graphene is synthesized with a facile solvothermal method, which presents excellent high-rate performance with highly-efficiency capacitive-battery characteristics. The obtained LiFePO4/activated carbon/graphene cathode material has hierarchical porous architecture mainly originated from the activated carbon and interconnected conductive networks constructed by the graphene, ensuring both the abundant pathways for Li+ diffusion and the fast electron transfer. Furthermore, the high surface area (367 m2 g−1) provides a double layer capacitive process during charge/discharge process, and also protects the LiFePO4 against the heavy current attack, especially under high current rate. As a result, the capacitive-battery behavior leads to superior rate capability and long cycle life. The LiFePO4/activated carbon/graphene cathode exhibits a remarkable high capacity of 66 mAh g−1 at an extremely high rate of 100 C, and the brilliant cycle stability is confirmed with the capacity retention of 82% after 3000 cycles, promising the high power applications. Furthermore, this study provides a new insight in simple preparation of the capacitive-battery materials by combing the active components and the capacitive components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.