Abstract

SummaryIn this work, we investigate the efficient estimation of the optimal design variables that maximize net present value (NPV) for the life-cycle production optimization during a single-well carbon dioxide (CO2) huff-n-puff (HnP) process in unconventional oil reservoirs. A synthetic unconventional reservoir model based on Bakken Formation oil composition is used. The model accounts for the natural fracture and geomechanical effects. Both the deterministic (based on a single reservoir model) and robust (based on an ensemble of reservoir models) production optimization strategies are considered. The injection rate of CO2, the production bottomhole pressure (BHP), the duration of injection and the production periods in each cycle of the HnP process, and the cycle lengths for a predetermined life-cycle time can be included in the set of optimum design (or well control) variables. During optimization, the NPV is calculated by a machine learning (ML) proxy model trained to accurately approximate the NPV that would be calculated from a reservoir simulator run. Similar to the ML algorithms, we use both least-squares (LS) support vector regression (SVR) and Gaussian process regression (GPR). Given a set of forward simulation runs with a commercial compositional simulator that simulates the miscible CO2 HnP process, a proxy is built based on the ML method chosen. Having the proxy model, we use it in an iterative-sampling-refinement optimization algorithm directly to optimize the design variables. As an optimization tool, the sequential quadratic programming (SQP) method is used inside this iterative-sampling-refinement optimization algorithm. Computational efficiencies of the ML proxy-based optimization methods are compared with those of the conventional stochastic simplex approximate gradient (StoSAG)-based methods. Our results show that the LS-SVR- and GPR-based proxy models are accurate and useful in approximating NPV in the optimization of the CO2 HnP process. The results also indicate that both the GPR and LS-SVR methods exhibit very similar convergence rates, but GPR requires 10 times more computational time than LS-SVR. However, GPR provides flexibility over LS-SVR to access uncertainty in our NPV predictions because it considers the covariance information of the GPR model. Both ML-based methods prove to be quite efficient in production optimization, saving significant computational times (at least 4 times more efficient) over a stochastic gradient computed from a high-fidelity compositional simulator directly in a gradient ascent algorithm. To our knowledge, this is the first study presenting a comprehensive review and comparison of two different ML-proxy-based optimization methods with traditional StoSAG-based optimization methods for the production optimization problem of a miscible CO2 HnP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call