Abstract

Capacity to remotely monitor and control systems for waste-water treatment and to provide real time and trustworthy data of system’s behavior to various stakeholders is of high relevance. SCADA systems are used to undertake this job. SCADA solutions are usually conceptualized and designed with a major focus on technological integrability and functionality. Very little contributions are brought to optimize these systems with respect to a mix of target functions, especially considering a lifecycle perspective. In this paper, we propose a structured methodology for optimizing SCADA systems from a lifecycle perspective for the specific case of waste-water treatment units. The methodology embeds techniques for handling entropy in the design process and to assist engineers in designing effective solutions in a space with multiple constrains and conflicts. Evolutionary multiple optimization algorithms are used to handle this challenge. After the foundation of the theoretical model calibrated for the specific case of waste-water treatment units, a practical example illustrates its applicability. It is shown how the model can lead to a disruptive solution, which integrates cloud computing, IoT, and data analytics in the SCADA system, with some competitive advantages in terms of flexibility, cost effectiveness, and increased value added for both integrators and beneficiaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.