Abstract

This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.