Abstract

Mice devoid of the original uncoupling protein UCP1 have provided opportunities to delineate UCP1 function in a series of biochemical and physiological contexts. The isolated brown-fat mitochondria from such mice are fully coupled (without the addition of GDP), but still exhibit a depressed capacity for ATP synthesis. However, they only show a 2-fold decrease in sensitivity to the de-energizing effect of free fatty acids, compared with UCP1-containing mitochondria, whereas they possess a (UCP1-independent) 50-fold higher sensitivity than liver mitochondria; the fatty acid sensitivities in wild-type and UCP1-deficient mitochondria may, however, be of different natures. Despite the fact that brown-fat cells from UCP1-ablated mice cannot produce heat when stimulated by noradrenaline ('norepinephrine') or fatty acids, UCP1-ablated mice can be induced to tolerate extended cold exposure, but the heat then fully results from shivering thermogenesis. Recruitable or adaptive (by cold acclimation or adaptation to a cafeteria diet) adrenergically-stimulated thermogenesis does not exist in the UCP1-ablated animals, demonstrating the unique ability of UCP1 to mediate recruitable non-shivering thermogenesis. In addition to information on the function of UCP1, the UCP1-ablated mice can be used to gain information concerning the function of the UCP1 homologues. Thus whereas an uncoupling function of the UCP1 homologues cannot be excluded, UCP1-ablated animals clearly lack any ability to recruit any UCP1 homologue to functionally replace the loss of thermogenesis resulting from UCP1. UCP1 (thermogenin) thus remains the only protein the activity of which can be recruited for the purpose of facultative thermogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.