Abstract

AbstractGlobal changes in precipitation patterns have increased the frequency and duration of flooding events. Freshwater inflows into estuaries reduce salinity levels and increase nutrient inputs, which can lead to eutrophication and impaired water quality. Oysters are important ecosystem engineers in coastal environments that are vulnerable to co‐occurring environmental stressors associated with freshwater flooding events. Successful recruitment is necessary to maintain adult oyster populations, but early life stage responses to multiple stressors are not well understood. Flood‐associated stressor conditions were observed near oyster habitats at multiple locations across the northern Gulf of Mexico during peak recruitment months in the spring and summer of 2021. In the laboratory, we examined the interactive effects of acidification, hypoxia, and low salinity on larval and juvenile life stages of the eastern oyster (Crassostrea virginica) to better understand the impact of flooding events on oyster development and survival. Salinity stress in isolation reduced larval growth and settlement, and decreased survival and growth at the juvenile stage. Hypoxia was more stressful to oyster larvae than to juveniles, whereas low pH had negative effects on juvenile growth. There were no synergistic effects of multiple flood‐associated stressors on early oyster life stages and effects were either additive or predicted by the salinity stress response. The negative impacts of flooding disturbances on recruitment processes in benthic populations need to be considered in restoration planning and flood control mitigation strategies as the frequency and intensity of extreme freshwater events continue to rise worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call