Abstract

Wind turbine blade life prediction is the most important parameter to estimate the power generation cost. Due to the price and importance of wind blade, many experimental and theoretical methods were developed to estimate damages and blade life. A novel multiaxial fatigue damage model is suggested for the life prediction of a wind turbine blade. Fatigue reduction of fiber and interfiber characteristics are separately treated and simulated in this research. Damage behavior is considered in lamina level and then extended to laminate; hence, this model can be used for multidirectional laminated composites. The procedure of fatigue-induced degradation is implemented in an ABAQUS user material subroutine. By applying the fatigue damage model, life is estimated by the satisfaction of lamina fracture criteria. This model provides a comprehensive idea about how damage happens in wind blades regarding a multi-axis fatigue loading condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.