Abstract

In order to simulate the operating fretting-fatigue conditions in cylindrical structural components, we have performed experimental studies on fretting fatigue of cylindrical specimens with clamped concave cylindrical pads of bridge type. Using the known solutions for stress intensity factors in the semi-elliptical cracks growing in cylindrical specimens, we predict the kinetics of propagation of fretting-fatigue cracks according to the two-parameter model described in Part 1. A close correlation of calculated and experimental fretting-fatigue life values is observed for AMg6N alloy for varied experimental fretting conditions (contact load, slip amplitude and friction coefficient). For alloy VT9 we have provided approbation of the technique, which takes into account distribution of the residual stresses in the material subsurface during calculation of stress-strain state and life under fretting-fatigue conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.