Abstract

Biofilms are interface micro-habitats formed by microbes that differ markedly from those of the ambient environment. The term 'subaerial biofilm' (SAB) was coined for microbial communities that develop on solid mineral surfaces exposed to the atmosphere. Subaerial biofilms are ubiquitous, self-sufficient, miniature microbial ecosystems that are found on buildings, bare rocks in deserts, mountains, and at all latitudes where direct contact with the atmosphere and solar radiation occurs. Subaerial biofilms on exposed terrestrial surfaces are characterized by patchy growth that is dominated by associations of fungi, algae, cyanobacteria and heterotrophic bacteria. Inherent subaerial settlers include specialized actinobacteria (e.g. Geodermatophilus), cyanobacteria and microcolonial fungi. Individuals within SAB communities avoid sexual reproduction, but cooperate extensively with one another especially to avoid loss of energy and nutrients. Subaerial biofilm metabolic activity centres on retention of water, protecting the cells from fluctuating environmental conditions and solar radiation as well as prolonging their vegetative life. Atmospheric aerosols, gases and propagatory particles serve as sources of nutrients and inoculum for these open communities. Subaerial biofilms induce chemical and physical changes to rock materials, and they penetrate the mineral substrate contributing to rock and mineral decay, which manifests itself as bio-weathering of rock surfaces. Given their characteristic slow and sensitive growth, SAB may also serve as bioindicators of atmospheric and/or climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.