Abstract

AbstractDegradation and loss of coral reefs due to climate change and other anthropogenic stressors has fueled genomics, proteomics, and genetics research to investigate coral stress response pathways and to identify resilient species, genotypes, and populations to restore these biodiverse ecosystems. Much of the research and conservation effort has understandably focused on the most taxonomically rich regions, such as the Great Barrier Reef in Australia and the Coral Triangle in the western Pacific. These ecosystems are analogous to tropical rainforests that also house enormous biodiversity and complex biotic interactions among different trophic levels. An alternative model ecosystem for studying coral reef biology is the relatively species poor but abundant coral reefs in the Hawaiian Archipelago that exist at the northern edge of the Indo‐Pacific coral distribution. The Hawaiian Islands are the world's most isolated archipelago, geographically isolated from other Pacific reef systems. This region houses about 80 species of scleractinian corals in three dominant genera (Porites, Montipora, and Pocillopora). Here we briefly review knowledge about the Hawaiian coral fauna with a focus on our model species, the rice coral Montipora capitata. We suggest that this simpler, relatively isolated reef system provides an ideal platform for advancing coral biology and conservation using multi‐omics and genetic tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call