Abstract
The marine hyperthermophilic crenarchaeon Ignicoccus hospitalis supports the propagation on its surface of Nanoarchaeum equitans, an evolutionarily enigmatic archaeon that resembles highly derived parasitic and symbiotic bacteria. The cellular and molecular mechanisms that enable this interarchaea relationship and the intimate physiologic consequences to I. hospitalis are unknown. Here, we used concerted proteomic and transcriptomic analyses to probe into the functional genomic response of I. hospitalis as N. equitans multiplies on its surface. The expression of over 97% of the genes was detected at mRNA level and over 80% of the predicted proteins were identified and their relative abundance measured by proteomics. These indicate that little, if any, of the host genomic information is silenced during growth in the laboratory. The primary response to N. equitans was at the membrane level, with increases in relative abundance of most protein complexes involved in energy generation as well as that of several transporters and proteins involved in cellular membrane stabilization. Similar upregulation was observed for genes and proteins involved in key metabolic steps controlling nitrogen and carbon metabolism, although the overall biosynthetic pathways were marginally impacted. Proliferation of N. equitans resulted, however, in selective downregulation of genes coding for transcription factors and replication and cell cycle control proteins as I. hospitalis shifted its physiology from its own cellular growth to that of its ectosymbiont/parasite. The combination of these multiomic approaches provided an unprecedented level of detail regarding the dynamics of this interspecies interaction, which is especially pertinent as these organisms are not genetically tractable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.