Abstract

Acquiring information is indisputably energy-consuming and conversely, the availability of information permits greater efficiency. Strangely, the scientific community long remained reluctant to establish a physical equivalence between the abstract notion of information and sensible thermodynamics. However, certain physicists such as Szilard and Brillouin proposed: (i) to give to information the status of a genuine thermodynamic entity (k B T ln2 joules/bit) and (ii) to link the capacity of storing information inferred from correlated systems, to that of indefinitely increasing organization. This positive feedback coupled to the self-templating molecular potential could provide a universal basis for the spontaneous rise of highly organized structures, typified by the emergence of life from a prebiotic chemical soup. Once established, this mechanism ensures the longevity and robustness of life envisioned as a general system, by allowing it to accumulate and optimize microstate-reducing recipes, thereby giving rise to strong nonlinearity, decisional capacity and multistability. Mechanisms possibly involved in priming this cycle are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.