Abstract

Genome size, known also as the C-value, has been proposed as an important determinant of life-history variation in numerous animal taxa. We assessed the relationships between genome size and fitness-related life-history traits in six species of interstitial marine annelids of the genus Ophryotrocha. Life-history traits and genome size data obtained from 18 additional annelid species were included in our analyses to have a broader phylogenetic scope. Unexpectedly, genome sizes assessed here by flow cytometry in four Ophryotrocha species were three times larger than previously reported values obtained using Feulgen densitometry. This has implications for the hypothesis that harsh interstitial habitats select for small genomes in meiofaunal annelids. Within the genus Ophryotrocha, significant and positive relationships were found between genome size and nucleus size, and between genome size, age at first egg mass deposition, body size and lifespan. These relationships held up in the broader phylogenetic comparison. Our study provides evidence for the important role played by genome size in the evolution of life-history traits in annelids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call