Abstract

Fluctuating population density in stochastic environments can contribute to maintain life-history variation within populations via density-dependent selection. We used individual-based data from a population of Soay sheep to examine variation in life-history strategies at high and low population density. We incorporated life-history trade-offs among survival, reproduction and body mass growth into structured population models and found support for the prediction that different life-history strategies are optimal at low and high population densities. Shorter generation times and lower asymptotic body mass were selected for in high-density environments even though heavier individuals had higher probabilities to survive and reproduce. In contrast, greater asymptotic body mass and longer generation times were optimal at low population density. If populations fluctuate between high density when resources are scarce, and low densities when they are abundant, the variation in density will generate fluctuating selection for different life-history strategies, that could act to maintain life-history variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.