Abstract

The principle of energy allocation states that individuals should attempt to maximize fitness by allocating resources optimally among growth, maintenance, and reproduction. Such allocation may result in trade-offs between survival and reproduction, or between current and future reproduction. We used a marked population of North American elk (Cervus elaphus) to determine how energetic costs of reproduction in the current year affect survival and reproduction in the subsequent year. Using a multistate mark–recapture model we examined the influence of individual and environmental variation on trade-offs between these 2 life-history traits. We observed no difference in survival probabilities between pregnant and nonpregnant individuals or as a function of recruiting an offspring. Nonetheless, there was a negative effect of recruiting an offspring in the current year on becoming pregnant the following year. Increased body condition, and higher precipitation, contributed to greater probabilities of becoming pregnant in a particular year regardless of reproductive state and previous recruitment. Costs associated with reproduction led to a reduced probability of future reproduction rather than a reduction in survival. These findings are consistent with risk-sensitive reproductive allocation, where adult survival is maintained through variation in reproductive effort resulting in high and stable adult survival and more-variable reproduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.