Abstract

Reproductive senescence, an intra‐individual decline in reproductive function with age, is widespread, but proximate factors determining its rate remain largely unknown. Most studies of reproductive senescence focus on females, leaving senescence in male function and its implications for female function largely understudied. We constructed linear mixed models to explore the interactive effects of paternal and maternal age and a life‐history trait (i.e. age at first reproduction) on four fitness components (i.e. laying date, clutch size, number of fledglings and number of recruits) measured in a wild, breeding population of blue tits Cyanistes caeruleus ogliastrae where individual breeding success has been followed for over 30 years (our dataset spanned 29 years). Previous studies have shown that, across female lifespan, laying date decreases and subsequently increases; earlier laying dates result in higher fitness because hatchlings have greater access to a seasonal food source. Our analyses reveal that females that initiate reproduction early in life show a greater delay in laying date with old age. In addition to delayed laying dates, older females lay smaller clutches. However, the magnitude of female age effects was influenced by the age at first reproduction of their breeding partners. Senescence of laying date and clutch size was reduced when females mated with males that reproduced early in life compared to males that delayed reproduction. We confirmed that both laying date and clutch size were significantly correlated with reproductive fitness suggesting that these dynamics early in the breeding cycle can have long‐term consequences. These complex phenotypic interactions shed light on the proximate mechanisms underlying reproductive senescence in nature and highlight the potential importance of cross‐sex age by life‐history interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.