Abstract

AbstractAutotomy, the self-amputation of body parts, serves as an antipredator defense in many taxonomic groups of animals. However, its adaptive value has seldom been quantified. Here, we propose a novel modeling approach for measuring the fitness advantage conferred by the capability for autotomy in the wild. Using a predator-prey system where a land snail autotomizes and regenerates its foot specifically in response to snake bites, we conducted a laboratory behavioral experiment and a 3-year multievent capture-mark-recapture study. Combining these empirical data, we developed a hierarchical model and estimated the basic life-history parameters of the snail. Using samples from the posterior distribution, we constructed the snail's life table as well as that of a snail variant incapable of foot autotomy. As a result of our analyses, we estimated the monthly encounter rate with snake predators at 3.3% (95% credible interval: 1.6%-4.9%), the contribution of snake predation to total mortality until maturity at 43.3% (15.0%-95.3%), and the fitness advantage conferred by foot autotomy at 6.5% (2.7%-11.5%). This study demonstrated the utility of the multimethod hierarchical-modeling approach for the quantitative understanding of the ecological and evolutionary processes of antipredator defenses in the wild.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.