Abstract

Accelerating rates of biodiversity loss underscore the need to understand how species achieve resilience—the ability to resist and recover from a/biotic disturbances. Yet, the factors determining the resilience of species remain poorly understood, due to disagreements on its definition and the lack of large‐scale analyses. Here, we investigate how the life history of 910 natural populations of animals and plants predicts their intrinsic ability to be resilient. We show that demographic resilience can be achieved through different combinations of compensation, resistance and recovery after a disturbance. We demonstrate that these resilience components are highly correlated with life history traits related to the species’ pace of life and reproductive strategy. Species with longer generation times require longer recovery times post‐disturbance, whilst those with greater reproductive capacity have greater resistance and compensation. Our findings highlight the key role of life history traits to understand species resilience, improving our ability to predict how natural populations cope with disturbance regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.