Abstract

AbstractPredation is a powerful agent of life history evolution in prey species, as demonstrated in diverse examples in crustaceans. Ubiquitous size- and age-selective predation mediates trade-offs among reproductive effort, survival, and growth, which cause evolution of constitutive and phenotypically plastic shifts in age and size at maturity. In accord with predictions of life history theory, comparative studies demonstrate that contrasting forms of selective predation generate divergent evolutionary changes in age- and size-specific allocation of reproductive effort within populations and species. Predation risk also influences egg and offspring size, and some crustaceans exhibit phenotypic plasticity in offspring size in response to chemical cues of predators. Because age-selective predation impacts the relative benefits of earlier versus later reproductive investment, predation may also shape senescence and life span of crustaceans. Additionally, individual differences in risk-taking behavior, sometimes termed “personalities,” have been examined in several crustaceans, and these may arise through among-individual variation in reproductive value. Finally, in some crustacean groups limb autotomy is a common, but costly, antipredator defense, and life history perspectives on autotomy suggest individuals may balance costs and benefits during predator encounters. Much of our understanding of predation’s role in life history evolution of prey derives from studies of crustaceans, and these organisms continue to be promising avenues to elucidate mechanisms of life history evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call