Abstract

Summary Monitoring small area contrasts in life expectancy is important for health policy purposes but subject to difficulties under conventional life table analysis. Additionally, the implicit model underlying conventional life table analysis involves a highly parametrized fixed effect approach. An alternative strategy proposed here involves an explicit model based on random effects for both small areas and age groups. The area effects are assumed to be spatially correlated, reflecting unknown mortality risk factors that are themselves typically spatially correlated. Often mortality observations are disaggregated by demographic category as well as by age and area, e.g. by gender or ethnic group, and multivariate area and age random effects will be used to pool over such groups. A case study considers variations in life expectancy in 1 118 small areas (known as wards) in Eastern England over a five‐year period 1999–2003. The case study deaths data are classified by gender, age, and area, and a bivariate model for area and age effects is therefore applied. The interrelationship between the random area effects and two major influences on small area life expectancy is demonstrated in the study, these being area socio‐economic status (or deprivation) and the location of nursing and residential homes for frail elderly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.