Abstract

AbstractFor a component or a system subject to stochastic degradation with sporadic jumps that occur at random times and have random sizes, we propose to model the cumulative degradation with random jumps using a single stochastic process based on the characteristics of Lévy subordinators, the class of nondecreasing Lévy processes. Based on the inverse Fourier transform, we derive a new closed‐form reliability function and probability density function for lifetime, represented by Lévy measures. The reliability function derived using the traditional convolution approach for common stochastic models such as gamma degradation process with random jumps, is revealed to be a special case of our general model. Numerical experiments are used to demonstrate that our model performs well for different applications, when compared with the traditional convolution method. More importantly, it is a general and useful tool for life distribution analysis of stochastic degradation with random jumps in multidimensional cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 483–492, 2015

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.